Decomposing Nitrous Oxide Thruster using Dielectric Barrier Discharge Project

Completed Technology Project (2011 - 2012)

Project Introduction

One of NASA's Grand Challenges is to design more efficient propulsion systems. The decomposing nitrous thruster with a dielectric barrier discharge is only one step away from the simplicity of cold gas thrusters, yet offers a theoretical Isp of 200 seconds – closer to the performance of monopropellant technologies.

The University of Maryland is proposing to use a dielectric barrier discharge (DBD) as a means to dissociate N2O. DBD uses alternating high voltage differences between two electrodes to create strong electric fields. One or both of the electrodes is covered in a dielectric, and a gap in between allows gas to pass through. Nitrous Oxide sent through the gap between the electrodes has its free electrons accelerated by the large E-field, and in the process the electrons collide with N2O molecules.

Anticipated Benefits

Small spacecraft with low power budgets and small Delta V requirements

Primary U.S. Work Locations and Key Partners

Decomposing Nitrous Oxide Thruster using Dielectric Barrier Discharge Project

Table of Contents

Project Introduction	1	
Anticipated Benefits		
Primary U.S. Work Locations		
and Key Partners	1	
Project Website:	2	
Organizational Responsibility	2	
Project Management		
Technology Maturity (TRL)	2	
Technology Areas	3	

Center Independent Research & Development: GSFC IRAD

Decomposing Nitrous Oxide Thruster using Dielectric Barrier Discharge Project

Completed Technology Project (2011 - 2012)

Organizations Performing Work	Role	Туре	Location
☆Goddard Space Flight Center(GSFC)	Lead Organization	NASA Center	Greenbelt, Maryland
University of Maryland- College Park(UMCP)	Supporting Organization	Academia	College Park, Maryland

Primary U.S. Work Locations

Maryland

Project Website:

http://aetd.gsfc.nasa.gov/

Organizational Responsibility

Responsible Mission Directorate:

Mission Support Directorate (MSD)

Lead Center / Facility:

Goddard Space Flight Center (GSFC)

Responsible Program:

Center Independent Research & Development: GSFC IRAD

Project Management

Program Manager:

Peter M Hughes

Project Manager:

John C Adams

Principal Investigator:

Eric H Cardiff

Technology Maturity (TRL)

Center Independent Research & Development: GSFC IRAD

Decomposing Nitrous Oxide Thruster using Dielectric Barrier Discharge Project

Completed Technology Project (2011 - 2012)

Technology Areas

Primary:

